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Abstract

Weibull statistics is a key tool in quality assessment of mechanical product life. This article presents a
new technique for computing the inherent bias from a Weibull parametric estimation using maximum
likelihood (such a bias being non-negligible for tests with small sample size). This technique extends
the range of censoring schemes on which the bias computation is accurate. It is based on Monte Carlo
simulations of data following the same scheme as the experimental data. This method applies for Weibull
2-parameters data as well as for a newly introduced distribution, the Advanced Weibull, which combines
properties from the Weibull 2-parameters and 3-parameters distributions.

Introduction

To model the randomness of some physical phenomenon like fatigue of material or mechanical product
life, the Weibull statistical distribution is often used. It has been introduced in the setting of material
strength by Waloddi Weibull ([11]) and later was extended to a wide range of types of experimental data
([12]). Today, the Weibull distribution is extensively used together with its special case, the exponential
distribution. For a general overview of this distribution, see [3]. The Weibull distribution itself possesses
two main forms, one with 2 parameters and one with 3 parameters. For clarity, these two distributions
are de�ned using L for the random variable (typically in life duration modeling). They are given with
their two most common formulations, the more mathematical form with η as the scale parameter, and a
form useful to engineers with a percentile requirement of L. As an example the latter form is given using
the 10th percentile, L10, as the scale parameter. This 10th percentile will be kept as scale factor along this
article. The shape factor is denoted β and, for the Weibull 3-parameters distribution, the 0 percentile or
minimum life is denoted L0 (guaranteed life that is 100% certain to be reached). The link between the
two forms is given by η = L10−L0

(− ln(0.9))1/β
, with L0 = 0 for the Weibull 2-parameters distribution.

• Weibull 2-parameters distribution:

P(L > x) = exp

(
−
(
x

η

)β)
= 0.9

(
x
L10

)β
with η, β, L10 > 0 ;

• Weibull 3-parameters distribution:

P(L > x) = exp

(
−
(
x− L0

η

)β)
= 0.9

(
x−L0
L10−L0

)β
with η, β, L10 > 0, L0 ≥ 0 .
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The Weibull 2-parameters is widely used (especially for life duration of mechanical components leading
to key quality assessment) since it keeps a good balance between the adaptability of the density to a
speci�c phenomenon and the ability to have its parameters estimated. For clarity, the rest of the article
uses the terminology of life modeling of mechanical components where failure and suspension stand for
exact and censored data. Within this �eld, life tests are performed, leading to failure and suspension
times, from which the Weibull parameters need to be estimated.

For the Weibull 2-parameters distribution, the classical method used for life analysis of mechanical
components is the Maximum Likelihood Estimation (MLE). This method is known to be biased (see
for instance [6]), this bias being non-negligible for small sample size used in testing, less than 30 items.
This bias is illustrated in Figures 1 and 2. Acknowledged median bias correction technique (for the MLE
estimation) was developed to obtain accurate estimates together with con�dence bounds. The current
bias correction method in life analysis of mechanical components uses correction factors computed from
Monte Carlo simulations and applied to non-censored data or Type II censored data (where suspended
data occurred at the time of last failure). For a complete explanation on this bias correction techniques,
see [1], [10] and [6, 7]. See also the recent article ([8]) referring to a software able to proceed such
bias correction. The present article is focusing on improving this bias correction technique for test data
including general censoring scenarios.

A speci�c feature from the Weibull 2-parameters distribution is that a failure can occur from the
very beginning (the 0 percentile L0 life is null). Some products might have the property that a non-zero
minimum life exists (L0 > 0), for instance when the failure process needs a minimum time to be initiated.
In that case, the 3 parameters Weibull distribution �ts better the life span. Nevertheless, the bias
correction method mentioned above cannot be adapted to the 3 parameters Weibull distribution without
the pre-knowledge of the L0 value. Several methods try to cope with this issue by evaluating the L0 value
that will lead to the best estimation for the two other parameters, for instance using a simplex approach
(see [2, 9]). Such methods, up to the knowledge of the author, rely on having a large sample size since
the L0 estimation techniques are similar to a curve �tting which allows no bias correction. In addition
a recent study of available Weibull 3-parameters estimation softwares concludes that discrepancies hold
between various softwares for identical initial data (see [4]).

The current article is introducing a new distribution based on a 2 parameters Weibull one, with a
modi�cation leading to a non-zero minimum threshold (or life). This minimum threshold will be fully
determined by the standard two parameters (β, L10) or (β, η) in a way that makes the bias correction
techniques suitable for Maximum Likelihood parametric estimations.

Bias correction factors for more general censoring

The purpose of the bias correction (for Maximum Likelihood Estimation) method is to compute, from
Monte Carlo simulations, correction factors that will be applied to the raw estimates obtained by the
Maximum Likelihood to correct the inherent bias. To reach this aim, the Monte Carlo simulations need
to be run for reference values for the parameters (L10 = 1 and β = 1). Then, the theory ([1], [10] and
[6, 7]) ensures that these correction factors are independent from the true value of the parameters and
can then be used on real data where, by de�nition, the true values of the parameters are unknown.

In addition, the Monte Carlo simulations need to generate test data that follows the same scenario
(in terms of failures and suspensions) as in the real case for which this bias correction factors will be
used. This is the reason why the traditional bias correction techniques is fully accurate for uncensored or
type-II censored data (because such scenarios can be perfectly simulated beforehand since they depend
only on the sample size and the number of failures). This is clearly shown in Figures 1 and 2 where
10, 000 tests were simulated, all of them analyzed with and without bias correction in order to get point
estimates of the L10 value (set at 1). The accuracy can then be evaluated while sorting the L10 estimates
and check that the resulting curve in well centered at 1. This is the fact with bias correction, while
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using the raw estimates, the L10 is overestimated by more than 10%. This error depends strongly on the
number of tested items, but the choice made for Figures 1 and 2 (15 to 20 items) is typical for industries
of mechanical products like bearings.

Figure 1: Test accuracy on L10 with or without
Bias correction

Figure 2: Test accuracy on L10 with or without
Bias correction

In practice, this method is applied on a wider range of test data and then a remaining bias is kept
when the test data deviates from the uncensored or type II censored cases. This is the case with Type-I
censoring or when suspensions occur at early stage (in between the failures) or later than the last failure.
This point is illustrated in Figure 11 where the former bias correction technique is underestimating the
value of β.

The proposed new methodology for computing the bias correction factors manages to compensate this
weakness in scenarios alternating uncensored and right censored data. Nowadays, it is doable time wise
to perform the full Monte Carlo simulations needed for the bias correction factors for any single data set.
Therefore, it is possible to modify the simulated data to �t the exact scenario of the test data from which
the Weibull parameters will be estimated.

Note that the new methodology will lead to a computation time of about 3 minutes (CPU time) on a
single laptop for a sample size of 30 items, using 1, 000, 000 runs to compute the bias correction factors.
The latter amount of runs ensures consistency in the bias correction computation.

Monte Carlo simulations

Pre-computation of the bias correction factors is possible for some speci�c test scenarios. In particular,
it is straightforward for uncensored and Type-II censored tests since the only information needed are the
sample size N and the number of failures M (M ≤ N). A matrix of bias correction factors can then be
created and used for further test data. The purpose of this section is to show a way to generate random
data according to a general scenario de�ned only by the sequence of failures and suspensions and their
relative ratios on a logarithmic scale. To apply the same methodology to more general test scenario, all
the simulated tests need to follow the dedicated test scenarios.
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First, some notations from the test data are needed:

(Fi)
M
i=1 = recorded failure times

K0 = number of suspensions within (0, F1)

(Ki)
M−1
i=1 = number of suspensions within [Fi, Fi+1)

KM = number of suspensions within [FM ,+∞)

(S0
j )K0
j=1 = recorded suspension times within (0, F1) (only if K0 > 0)

(Sij)
Ki
j=1 = recorded suspension times within [Fi, Fi+1) (only if Ki > 0)

(SMj )KMj=1 = recorded suspension times within [FM ,+∞) (only if KM > 0)

For the purpose of the Monte Carlo simulation, N random numbers are generated according to the
desired distribution (Weibull 2-parameters) representing the life times of N items. Among them, some
will be kept as failure times and some will be modi�ed and turned into suspension times. The aim is
to get at the end a sequence of failure and suspension times following the same scenario as the test
data. Here, a scenario means the alternate sequence of failures and suspensions together with criterion
on ratios between suspension times and their closest failure time(s). See the di�erent steps hereafter for
more details.

Similar notations for the simulated data are de�ned:

(fi)
M
i=1 = simulated failure times

(s0
j )
K0
j=1 = simulated suspension times within (0, f1) (only if K0 > 0)

(sij)
Ki
j=1 = simulated suspension times within [fi, fi+1) (only if Ki > 0)

(sMj )KMj=1 = simulated suspension times within [fM ,+∞) (only if KM > 0)

The way to get the simulated failure and suspension times listed above from the life times of the N
items (Weibull 2-parameters randomly generated numbers with reference parameters L10 = 1 and β = 1)
is explained step by step. Note that, as for the former bias correction method, the choice for the reference
values is irrelevant since the bias correction factors are normalized.

Step 0.

• Step 0.a: (only if K0 > 0) Choose uniformly, among the N items, the K0 ones to be suspended
before the �rst failure.

• Step 0.b: Set f1 as the minimum time among the N −K0 remaining items

• Step 0.c: (only if K0 > 0) Set (s0
j ) as, s

0
j = S0

j ×
f1

F1
, so that, ∀j = 1 to K0 ,

s0
j

f1
=
S0
j

F1
.

Step 1.

• Step 1.a: (only if K1 > 0) Choose uniformly, among the N − 1−K0 remaining items, the K1 ones
to be suspended between the �rst and the second failure.

• Step 1.b: Set f2 as the minimum time among the N − 1−K0 −K1 remaining items

• Step 1.c: (only if K1 > 0) Set (s1
j ) (∀j = 1 to K1) as

log
(
s1
j

)
=

log

(
F2

S1
j

)

log

(
F2

F1

) × log (f1) +

log

(
S1
j

F1

)

log

(
F2

F1

) × log (f2) ,
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so that, for each j, log(s1
j ) is the center of mass of log(f1) and log(f2) with the same weights as

log(S1
j ) being the center of mass of log(F1) and log(F2)

Steps 1.a, 1.b and 1.c are repeated M − 2 times using each time the lower and lower number of
remaining items. For clarity, the general ith step is presented (i = 1 to M − 1)

Step i.

• Step i.a: (only if Ki > 0) Choose uniformly, among the N − i− (K0 +K1 + · · ·+Ki−1) remaining
items, the Ki ones to be suspended between the ith and the (i+ 1)th failure.

• Step i.b: Set fi+1 as the minimum time among the N − i− (K0 +K1 + · · ·+Ki) remaining items

• Step i.c: (only if Ki > 0) Set (sij) (∀j = 1 to Ki) as

log
(
sij
)

=

log

(
Fi+1

Sij

)

log

(
Fi+1

Fi

) × log (fi) +

log

(
Sij
Fi

)

log

(
Fi+1

Fi

) × log (fi+1) ,

so that, for each j, log(sij) is the center of mass of log(fi) and log(fi+1) with the same weights as

log(Sij) being the center of mass of log(Fi) and log(Fi+1)

Step M . The M th step deals with the suspensions occurring after the last failure (if KM > 0). Set

(sMj ) as sMj = Sij ×
fM
FM

, so that, ∀j = 1 to KM ,
sMj
fM

=
SMj
FM

.

At the end of this process, the full string of times is generated following the test data scenario in
terms of the order of suspensions, failures and relatives ratios (on a logarithmic scale).

Such a process is done to each of the 1, 000, 000 simulated Weibull set of times (Failures and Suspen-
sions). Resulting times are then analyzed as simulated test data via the Maximum Likelihood Estimation
to get raw estimates of β and L10 (or η) as for the current bias correction factors computation. These
new estimates being then compared to the reference values in order to quantify the bias corresponding
to the speci�c scenario

Bias correction factors

For the sake of completeness, the computation of the correction factors is explained hereafter (see [1], [10]
and [6, 7]). They are given by the following formula (1) applied to each of the Monte Carlo run (where
all the parameters are known):

CF (Lq) = β̂ ln

(
Lq

L̂q

)
and CF (β) =

β

β̂
· (1)

The qth percentile is Lq = ln (1− q/100) / (ln 0.9) for the reference values β = 1 and L10 = 1, so that,
from (1), the �nal formulae for the correction factors are

CF (Lq) = β̂ ln

 ln (1− q/100)

ln 0.9

L̂q

 and CF (β) =
1

β̂
· (2)
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Along the full simulation campaign, values for the correction factors are recorded, ranked and several
(like the 5th, 10th, 50th, 90th and 95th) percentiles are registered leading to

[CF (Lq)5 ; CF (Lq)10 ; CF (Lq)50 ; CF (Lq)90 ; CF (Lq)95] ,

[CF (β)5 ; CF (β)10 ; CF (β)50 ; CF (β)90 ; CF (β)95] .

This way, after having obtained the Maximum Likelihood estimations (β̂, L̂q) of parameters from a set
of data, median bias corrected estimates can be computed as follows:

L̂q,50 = L̂q × exp

(
CF (Lq)50

β̂

)
and β̂50 = β̂ × CF (β)50 . (3)

Similar formulae stand for the other percentiles leading to any desired bias corrected con�dence bounds.
For example the values for L̂q,5, L̂q,10, L̂q,90 and L̂q,95 together with the β̂5, β̂10, β̂90 and β̂95 are obtained

by replacing, in (3), (L̂q50, β̂50) by the ad hoc correction factors (L̂q,5, β̂5), (L̂q,10, β̂10), (L̂q,90, β̂90) and

(L̂q,95, β̂95).

Computer validation

The two bias correction methods (for Maximum Likelihood Estimations) are compared:

• Bias Correction 1. Original method based on correction factors computed from only Type II sce-
narios.

• Bias Correction 2. New method based on correction factors for the actual scenario of the studied
test data.

To give more details on the improved bias correction techniques, results from Monte Carlo simulations
are presented hereafter. The two bias correction methods are by de�nition perfectly accurate for type II
censored data or uncensored data. The robustness is checked for Type I censoring. Then, 2 test scenarios
are simulated (all with 30 tested items and 1, 000 runs):

• Test 1. Type I test with suspension time T = 2× L10

• Test 2. Type I test with suspension time T = 3× L10

The suspension times must guarantee almost all simulated test to reach enough failures to make the
parameters estimation valid. Indeed, when too few failures (2 or less) are obtained, the test has to be
discarded since no valuable statistical Weibull estimation can be performed. This discarding should be
restricted to a very limited amount of runs. The veri�cation is based on Weibull 2 parameters data. The
scale parameter L10 is �xed at 1 without losing any generality. The β is chosen at 1.5, 2 and 3.

For each of these tests, accuracy and precision of the estimation are evaluated onto the L10, L50 and
β. The evaluation of the accuracy means to quantify the potential remaining bias in the estimation. The
evaluation of the precision means to quantify the width of the uncertainty of the estimation.

• Accuracy: the accuracy is evaluated via the ratio between the median estimate (of L10, L50 and β)
and the true value.

• Precision: the precision is evaluated via the ratio between the upper and lower bounds of the 90%
con�dence intervals of L10, L50 and β, the �rst two ratios being put at the power β: R(L10)β =
(RatioL10)β ; R(L50)β = (RatioL50)β ; R(β) = (Ratio β).
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The ratios R(L10) and R(L50) are strongly dependent on β. Indeed, low β leads naturally to wider
con�dence intervals since the failures are more spread out. Therefore, those ratios are put to the power
β to get a quantity that is less dependent on β. Indeed, for Type II tests, such ratios to the power β are
β independent.

Precision ratios are computed for each simulated test. Then a comparison can be drawn from their
distributions, through the median and relevant percentiles. For the accuracy evaluation, the ratios are
computed using a transformation to get only ratios larger than 1, taking the exponential of the absolute
value of the logarithm of each ratio (see Table 5). Thus, estimations leading to half or twice the true
value give the same ratio.

The complete results are presented in appendix (Table 2 to 13) where all quantities are given through
their 50th and 90th percentiles. The exponent (1) or (2) in Table 2 to 13 refers respectively to the standard
bias correction and the new one proposed in this article. The purpose of these tables is to compare the
performance (accuracy and precision) of these two bias correction techniques. Even if results are similar
for high β and high suspension time, all outputs are better with the new bias correction techniques.
Moreover, signi�cant di�erence is observed for low β.

Figure 3: Test precision on L10 Figure 4: Test accuracy on L10

In addition Figure 3 to 8 are showing the improved precision and accuracy of the new bias correction
techniques in an illustrative case, where β = 1.5 and the suspension time is T = 2 × L10. Indeed, the
precision ratios R(L10)β , R(L50)β and R(β) are all three closer to 1 with the new techniques (see Figures
3, 5 and 7). In particular, the new bias correction techniques prevents from extreme uncertainty onto
some parameter estimation as it can be observed in the high percentiles for the test precision (at 80%,
R(L10)β goes from 23 to 13 and R(L50)β goes from 50 to 15). This is of importance since an estimation
of L10, for instance, with a ratio 50 between the upper and lower bound of the con�dence interval leads
to unacceptable results. In such case the results from the test cannot be used. From Figure 3 this event
occurs with a 10% risk when using the traditional bias correction techniques, but only with a 3% risk
when using the new bias correction techniques.

In Figure 7, the steps observed for the precision ratio are due to the fact that the con�dence bounds
are computed from the median estimation of β via a multiplicative factor that depends only on the
number of failures (the total sample size being constant and equal to 30). Therefore, the several plateau
correspond to identical number of failures. Figures 6 and 8 give evidence that the classical bias correction
techniques lead to a global overestimation of the L50 and underestimation of the β. As for the accuracy
onto the L10, both techniques are equivalent with a light premium to the new one (Figure 4).
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Figure 5: Test precision on L50 Figure 6: Test accuracy on L50

Figure 7: Test precision on β Figure 8: Test accuracy on β

In addition to the computer validation, three real examples of test data (normalized) are shown to
illustrate the gain in accuracy and precision on concrete data that are deviating from the Type II scenario
(see Figures 9 to 11). The test data have the following settings: Data 1 (30 items and 11 Failures), Data
2 (27 items and 6 Failures) and Data 3 (30 items and 4 Failures). Data 1 is a Type I test (all suspensions
at the same time). Data 3 is an extreme case since the test encountered numerous suspensions much
later than the last failure, ending in a severe underestimation of the β parameters which has drastic e�ect
onto the accuracy and the precision. Data 2 encounters late suspensions closer to the �nal failures, but
it contains several suspensions in the course of the tests so earlier than the last failure.

Note (from Table 1) that the di�erences observed on the Data 1 to 3 (see Figures 9 to 11) are larger
than the one shown in the simulations (Figure 3 to 8) because the scenarios from the real test data are
deviating from the Type II one to a larger extend.

Both computer validation and real examples are enlightening the signi�cant bene�t of the new method-
ology for bias correction.
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Figure 9: Bias correction comparison (Data 1)

Figure 10: Bias correction comparison (Data 2)

Table 1: Precision and Accuracy deviation on 3 examples

Acc. L10 Acc. L50 Acc. β Prec. L10 Prec. L50 Prec. β
Data 1 29% 83 % 86 % 89 % 99 % 64 % %
Data 2 3 % 33 % 20 % 42 % 75 % 31 %
Data 3 3% 10% 11% 17 % 15% 10%

De�nition of the Advanced Weibull distribution

Some life models require the use of a minimum life, a quantity that is certain to be reached without
failure. This quantity is denoted L0. The Weibull variant with such a minimum life is the 3-parameters
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Figure 11: Bias correction comparison (Data 3)

distribution de�ned in the introduction. When it comes to the parametric estimation, the Weibull 3-
parameters is not compatible with the bias correction technique, unless the minimum life L0 is �xed.
In practice, this L0 is estimated prior to the other parameters (β and L10). In addition, no con�dence
interval is given. The current section proposes a new statistical distribution able to capture a minimum
life and to keep the bias correction technique valid, even on the L0 itself.

De�nition

The de�nition of the Advanced Weibull distribution is:

P(L > x) = 0.9

(
1

1−αβ0

((
x
L10

)β
−αβ0

))
with β0, β, L10 > 0 and 1 > α ≥ 0 , (4)

where β and L10 are parameters and β0 and α are structural constants.
The idea behind this new distribution is to set a constant α (0 ≤ α < 1) representing the ratio between

the minimum life L0 and the L10 life at a chosen slope parameter β0. As an example, for rolling bearings,
the choice for α can typically be 0.05, approximating the ISO standard [5] ratio L0.05/L10 = 0.05. For
β0, the choice can also follow the ISO standard [5] being β0 = 1.5.

The choice for β0 and α has to be made beforehand and depend on the physical process examined
(electronic component or rolling bearing for instance) but not on the product size or design. The initial
choice is then valid for the entire product range so that β0 and α are structural constants and not
parameters to be estimated. That is why this distribution has only 2 parameters to estimate.

The formula (4) is de�ned for x ≥ α
β0
β L10 and leads to a non-zero minimum life L0 (meaning

P(L > L0) = 1) whose value is L0 = α
β0
β L10.

It should be �rst noticed that the above formula corresponds to a proper statistical distribution (going
from 1 to 0 when x goes from L0 to in�nity). Moreover, the L10 parameter still corresponds to the 90%
reliability, that is P(L > L10) = 0.9. The possibility to state a non-zero minimum life gives the �exibility
to have a better �t with real data for high reliability. From a theoretical point of view, this �exibility is
obviously weaker than the one of the 3 parameters Weibull where the minimum life L0 is independent
from the 2 other parameters. But its gain in terms of bias correction for the parameters estimation
and con�dence bounds is an asset that makes this new distribution more advanced. Now, the focus is to



Quality Engineering Applications and Research

Blachère, Paper 2015-0377, "New bias correction for Weibull parametric estimation"
Page 11 of 17

prove that this distribution keeps the key characteristic of the classical Weibull 2 parameters distribution,
namely the existence of median-bias correction techniques.

Indeed, an easier modi�cation would have been to change L0 into αL10 in the de�nition of the
Weibull 3 parameters distribution in order to obtain a minimum threshold seen as a function of the other
parameters. But, with this simpli�cation, the bias correction techniques fails since the correction factors
are no longer independent from the reference values chosen for the simulations. This makes the correction
factors not useable.

Figure 12: Advanced Weibull density function
Figure 13: Advanced Weibull cumulative probabil-
ity

Plots (Figures 12 and 13) are shown, representing the cumulative probability (decreasing) and the
density function for β0 = 1.5, α = 0.05 and L10 = 100. The value of β taking values 1, 2 and 3. Note that
a change in β0 will almost not a�ect the density functions (the slight change cannot be seen graphically)
but only the value of L0. The values of α and L10 applies as scale factors, their e�ect being then not
shown.

Maximum Log-Likelihood estimation

To prove that a median-bias correction, for the maximum likelihood estimation of the scale L10 and the
slope β parameters, is possible for the Advanced Weibull distribution, the plan is to follow the method
used for the classical Weibull 2 parameters distribution ([1, 6, 7, 10]). Let de�ne

C = C (α, β0) =
1

(1− αβ0)
(− ln(0.9)) ,

such that the cumulative probability of the Advanced Weibull distribution (4) can be written as

P(L > x) = exp

(
−C

((
x

L10

)β
− αβ0

))
. (5)

The probability density (derivative of the cumulative probability) function is

f(x) = −∂P(L > x)

∂x
= C

(
β

L10

(
x

L10

)β−1
)
× exp

(
−C

((
x

L10

)β
− αβ0

))
. (6)
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Estimating the distribution parameters requires data from either tests or �eld. For life duration, this data
consists of failure and suspension times. The principle of the Maximum Likelihood method is to �nd the
parameters that render this data the most probable (highest likelihood) to occur. The Log-Likelihood
function Λ for n items with r failure times (xi)

r
i=1 and (n− r) suspension times (xi)

n
i=r+1 is by de�nition

Λ =

r∑
i=1

ln(f(xi))︸ ︷︷ ︸
Λ1

+

n∑
i=r+1

ln(P(L > xi))︸ ︷︷ ︸
Λ2

, (7)

where the two terms on the right hand side can be rewritten using (5) and (6):

Λ1 = r ln(C) + r ln

(
β

L10

)
+

r∑
i=1

ln

(
xi
L10

)β−1

− C
r∑
i=1

(
xi
L10

)β
+ Cαβ0r (8)

and

Λ2 = −C
n∑

i=r+1

(
xi
L10

)β
+ Cαβ0(n− r) . (9)

Combining the two terms (8) and (9) into (7), the log-Likelihood function Λ becomes

Λ = r ln(C) + r ln(β)− r ln(L10) + (β − 1)

r∑
i=1

ln

(
xi
L10

)
− C

n∑
i=1

(
xi
L10

)β
+ Cαβ0n .

Now, the derivative of Λ with respect to β and L10 gives

∂Λ

∂β
(β, L10) =

r

β
+

r∑
i=1

ln

(
xi
L10

)
− C

n∑
i=1

(
xi
L10

)β
ln

(
xi
L10

)
and

∂Λ

∂L10
(β, L10) = − βr

L10
+
Cβ

L10

n∑
i=1

(
xi
L10

)β
.

The next step is to solve the following system of equations (S) whose solutions are the raw estimates(
β̂, L̂10

)
for the unknown parameters (β, L10):

(S) =

(
∂Λ

∂β

(
β̂, L̂10

)
= 0 ;

∂Λ

∂L10

(
β̂, L̂10

)
= 0

)
The system can be written as

(S) =



1

β̂
+

r∑
i=1

ln (xi)

r
− ln

(
L̂10

)
−
C

n∑
i=1

xβ̂i ln (xi)

rL̂10

β̂
+

C ln
(
L̂10

) n∑
i=1

xβ̂i

rL̂10

β̂
= 0 ;

r =
C

L̂10

β̂
×

n∑
i=1

xβ̂i


(10)
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So, by replacing r by its expression coming from the second equation in (10), into the last two terms of
the �rst equation of (10), the system becomes

(S) =


1

β̂
+

r∑
i=1

ln (xi)

r
−

n∑
i=1

xβ̂i ln (xi)

n∑
i=1

xβ̂i

= 0 ; L̂10 =


C

n∑
i=1

xβ̂i

r


1

β̂

 (11)

At this point, the same steps as for the classical Weibull 2 parameters distribution can be followed to
construct the median bias correction techniques, namely to show the remarkable result that bias computed
onto a reference distribution with known parameters (β = 1 and L10 = 1 typically) can be applied for the
estimation of unknown parameters in a way that is independent of the parameter values. Nevertheless,
it is simpler to compare the system (S) in (11) with the one for the classical Weibull 2 parameters

distribution, called (S(Clas.)) (de�ned in (12)), whose solutions are denoted
(
β̂(Clas.), L̂10(Clas.)

)
.

From this comparison, the estimates for the Advanced Weibull distribution can be deducted from the
estimates for the classical Weibull 2-parameters distribution as explained hereafter. For completeness,
the system (S(Clas.)) is de�ned:

(S(Clas.)) =



1

β̂(Clas.)
+

r∑
i=1

ln (xi)

r
−

n∑
i=1

x
β̂(Clas.)
i ln (xi)

n∑
i=1

x
β̂(Clas.)
i

= 0 ;

L̂10(Clas.) =

(
1

r
(− ln 0.9)

n∑
i=1

x
β̂(Clas.)
i

) 1

β̂(Clas.)


(12)

Namely, comparing the two systems (S) and (S(Clas.)) for identical set (xi)
n
i=1, the link between the

solutions leads to

β̂ = β̂(Clas.) and L̂10 =
(
1− αβ0

) −1

β̂(Clas.) × L̂10(Clas.) . (13)

More generally,

L̂q = η̂(Clas.)×
(
− ln

(
1− q

100

)
− ln(0.9)

αβ0

1− αβ0

) −1

β̂(Clas.)

. (14)

Therefore the estimation for the Advanced Weibull distribution can be derived from the solutions of
the system of equations for the classical Weibull 2 parameters distribution by the simple modi�cations
(13). This is of importance because it allows using only a standard software (like Matlab) giving the
numerical solutions of the system (S(Clas.)).

Correction factors

Similarly to the Weibull 2-parameters, the correction factors are computed from the qth life percentile
for the reference values β = 1 and L10 = 1:

Lq = L10 ×

((
1− αβ0

)
× ln (1− q/100)

ln 0.9
+ αβ0

) 1
β

=

(
1− αβ0

)
× ln (1− q/100)

ln 0.9
+ αβ0 . (15)
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Replacing (15) into (1), the �nal formulae for the correction factors are then

CF (Lq) = β̂ ln


(
1− αβ0

)
× ln (1− q/100)

ln 0.9
+ αβ0

L̂q

 and CF (β) =
1

β̂
· (16)

These factors need then to be used as in (3) in order to get the bias corrected estimations for the Advanced
Weibull distribution.

Discussion

Likewise the Weibull 2-parameters distribution, the Advanced Weibull one bene�ts from having bias
correction techniques for the Maximum Likelihood Estimation of its parameters. This property makes
it useful when a non-zero minimum life is needed and when insu�cient test data (typically less than
100) are available. When extended test data are available, it is then possible to pick safely a L0 value
by curve �tting in order to pursue with a Weibull 3-parameters which boils down to a shifted Weibull
2-parameters. Nevertheless, with fewer test data, �xing the value of L0 is not reliable since it does not
come with con�dence bounds, which are crucial to estimate the precision of any estimation.

The drawback of the Advanced Weibull distribution is that it relies on �xed constants (α,β0) assumed
to be general constants �xed by pre-knowledge on a larger class of items that the speci�c tested ones. This
is typically the case when dealing with bearings for which the ISO standard can provide such constants.

Conclusion

For the Maximum Likelihood Estimation of the Weibull 2-parameters, a new bias correction techniques
is introduced with evidence (through examples and Monte Carlo simulations) of its improved accuracy
and precision onto the parameter estimation.

An Advanced Weibull statistical distribution is introduced, that allows analyzing test data assuming a
non-zero minimum threshold while keeping the use of existing bias correction techniques. This Advanced
distribution is typically useful to estimate percentiles at a higher reliability level than 90% together with
con�dence bounds.

Finally note that the present methodology can readily adapt to sudden death tests following the exact
same methodology as for the classical Weibull 2-parameters distribution.
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Tables on results and errors

The exponent (1) or (2) in Table 2 to 13 refers respectively to the current bias correction on Maximum
Likelihood estimates and the new one proposed in this article.

Table 2: Precision results - R(L10)β - Suspension time = 2× L10

R(L10)β β=1.5(1) β=1.5(2) β=2(1) β=2(2) β=3(1) β=3(2)

50th prc. 9.21 6.59 7.39 6.34 5.83 5.53
90th prc. 48.83 19.62 20.43 15.5 10.59 9.66
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Table 3: Precision results - R(L50)β - Suspension time = 2× L10

R(L50)β β=1.5(1) β=1.5(2) β=2(1) β=2(2) β=3(1) β=3(2)

50th prc. 9.77 6.2 4.46 3.94 2.51 2.45
90th prc. 434.31 37.33 23.63 13.04 3.73 3.55

Table 4: Precision results - R(β) - Suspension time = 2× L10

R(β) β=1.5(1) β=1.5(2) β=2(1) β=2(2) β=3(1) β=3(2)

50th prc. 3.43 3.1 2.9 2.7 2.14 2.11
90th prc. 5.52 4.47 3.84 3.5 2.38 2.36

Table 5: Accuracy results - Ratio (L10)est./(L10)true - Suspension time = 2× L10

exp
∣∣∣log

(
L10 est.
L10 true

)∣∣∣ β=1.5(1) β=1.5(2) β=2(1) β=2(2) β=3(1) β=3(2)

50th prc. 1.29 1.28 1.2 1.19 1.12 1.11
90th prc. 1.86 1.8 1.6 1.57 1.33 1.32

Table 6: Accuracy results - Ratio (L50)est./(L50)true - Suspension time = 2× L10

exp
∣∣∣log

(
L50 est.
L50 true

)∣∣∣ β=1.5(1) β=1.5(2) β=2(1) β=2(2) β=3(1) β=3(2)

50th prc. 1.28 1.23 1.15 1.14 1.06 1.06
90th prc. 2.53 1.73 1.55 1.4 1.15 1.15

Table 7: Accuracy results - Ratio (β)est./(β)true - Suspension time = 2× L10

exp
∣∣∣log

(
β est.
β true

)∣∣∣ β=1.5(1) β=1.5(2) β=2(1) β=2(2) β=3(1) β=3(2)

50th prc. 1.32 1.28 1.27 1.24 1.18 1.17
90th prc. 2.04 1.8 1.75 1.67 1.49 1.47

Table 8: Precision results - R(L10)β - Suspension time = 3× L10

R(L10)β β=1.5(1) β=1.5(2) β=2(1) β=2(2) β=3(1) β=3(2)

50th prc. 6.63 5.65 5.58 5.24 4.5 4.38
90th prc. 15.64 11.78 10.08 9 6.26 6.04
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Table 9: Precision results - R(L50)β - Suspension time = 3× L10

R(L50)β β=1.5(1) β=1.5(2) β=2(1) β=2(2) β=3(1) β=3(2)

50th prc. 3.36 3.02 2.39 2.3 2.09 2.07
90th prc. 8.58 6 3.43 3.24 2.44 2.42

Table 10: Precision results - R(β) - Suspension time = 3× L10

R(β) β=1.5(1) β=1.5(2) β=2(1) β=2(2) β=3(1) β=3(2)

50th prc. 2.59 2.39 2.09 2.03 1.69 1.67
90th prc. 3.15 2.85 2.29 2.24 1.72 1.72

Table 11: Accuracy results - Ratio (L10)est./(L10)true - Suspension time = 3× L10

exp
∣∣∣log

(
L10 est.
L10 true

)∣∣∣ β=1.5(1) β=1.5(2) β=2(1) β=2(2) β=3(1) β=3(2)

50th prc. 1.24 1.23 1.18 1.18 1.11 1.11
90th prc. 1.78 1.75 1.5 1.48 1.27 1.27

Table 12: Accuracy results - Ratio (L50)est./(L50)true - Suspension time = 3× L10

exp
∣∣∣log

(
L50 est.
L50 true

)∣∣∣ β=1.5(1) β=1.5(2) β=2(1) β=2(2) β=3(1) β=3(2)

50th prc. 1.16 1.14 1.1 1.09 1.05 1.05
90th prc. 1.53 1.41 1.23 1.22 1.13 1.13

Table 13: Accuracy results - Ratio (β)est./(β)true - Suspension time = 3× L10

exp
∣∣∣log

(
β est.
β true

)∣∣∣ β=1.5(1) β=1.5(2) β=2(1) β=2(2) β=3(1) β=3(2)

50th prc. 1.22 1.2 1.16 1.16 1.11 1.11
90th prc. 1.66 1.6 1.46 1.44 1.29 1.29


